On some properties of contracting matrices
نویسنده
چکیده
The concepts of paracontracting, pseudocontracting and nonexpanding operators have been shown to be useful in proving convergence of asynchronous or parallel iteration algorithms. The purpose of this paper is to give characterizations of these operators when they are linear and finite-dimensional. First we show that pseudocontractivity of stochastic matrices with respect to ‖ · ‖∞ is equivalent to the scrambling property, a concept first introduced in the study of inhomogeneous Markov chains. This unifies results obtained independently using different approaches. Secondly, we generalize the concept of pseudocontractivity to set-contractivity which is a useful generalization with respect to the Euclidean norm. In particular, we demonstrate non-Hermitian matrices that are set-contractive for ‖ · ‖2, but not pseudocontractive for ‖ · ‖2 or ‖ · ‖∞. For constant row sum matrices we characterize set-contractivity using matrix norms and matrix graphs. Furthermore, we prove convergence results in compositions of set-contractive operators and illustrate the differences between set-contractivity in different norms. Finally, we give an application to the global synchronization in coupled map lattices.
منابع مشابه
TRIANGULAR FUZZY MATRICES
In this paper, some elementary operations on triangular fuzzynumbers (TFNs) are defined. We also define some operations on triangularfuzzy matrices (TFMs) such as trace and triangular fuzzy determinant(TFD). Using elementary operations, some important properties of TFMs arepresented. The concept of adjoints on TFM is discussed and some of theirproperties are. Some special types of TFMs (e.g. pu...
متن کاملAn automaton group: a computational case study
We introduce a two generated weakly branch contracting automaton group $G$ which is generated by a two state automaton on a three letter alphabet. Using its branch structure and the finiteness nature of a sequence of its factor groups we compute the order of some of these factors. Furthermore some algebraic properties of $G$ are detected .
متن کاملOn the eigenvalues of some matrices based on vertex degree
The aim of this paper is to compute some bounds of forgotten index and then we present spectral properties of this index. In continuing, we define a new version of energy namely ISI energy corresponded to the ISI index and then we determine some bounds for it.
متن کاملSome results on higher numerical ranges and radii of quaternion matrices
Let $n$ and $k$ be two positive integers, $kleq n$ and $A$ be an $n$-square quaternion matrix. In this paper, some results on the $k-$numerical range of $A$ are investigated. Moreover, the notions of $k$-numerical radius, right $k$-spectral radius and $k$-norm of $A$ are introduced, and some of their algebraic properties are studied.
متن کاملProperties of Central Symmetric X-Form Matrices
In this paper we introduce a special form of symmetric matrices that is called central symmetric $X$-form matrix and study some properties, the inverse eigenvalue problem and inverse singular value problem for these matrices.
متن کاملProperties of matrices with numerical ranges in a sector
Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...
متن کامل